Пусть х (км/ч) - скорость одного пешехода; 3х (км) - расстояние, которое он до встречи за 3 часа у (км/ч) - скорость другого пешехода; 3у (км) - расстояние, которое он до встречи за 3 часа. Составим систему уравнений по условию задачи и решим её методом алгебраического сложения: 3х + 3у = 30 3х - 3у = 6
6х = 36 х = 36 : 6 х = 6 (км/ч) - скорость одного пешехода
Подставим значение х в любое уравнение системы 3 * 6 + 3у = 30 3 * 6 - 3у = 6 18 + 3у = 30 18 - 3у = 6 3у = 30 - 18 3у = 18 - 6 3у = 12 3у = 12 у = 12 : 3 у = 12 : 3 у = 4 у = 4 (км/ч) - скорость другого пешехода Р.S. Скорость второго пешехода (у) можно найти ещё и так: 30 : 3 = 10 (км/ч) - скорость сближения двух пешеходов 10 - 6 = 4 (км/ч) - скорость второго пешехода. Вiдповiдь: 6 км/год i 4 км/год.
Двузначное число, записанное цифрами a и b это число 10a+b Умножение на 10 даст трехзначное число 100a+10b Это число на 3 меньше, чем (a+b)³ Составляем равенство 100a+10b+3=(a+b)³
Так как a и b - цифры от 0 до 9, но а≠0, иначе не получим двузначного числа. 1≤a≤9 0≤b≤9 Далее решаем методом перебора с ограничением.
Слева число больше 100, значит и справа тоже должно быть больше 100 Значит случаи a=1 b=1 a=1 b=2 a=1 b=3 a=2 b=1 a=2 b=2
a=3 b=1 не подходят, справа получим число меньшее 100
a=1 b=4 100+40+3 ≠(1+4)³ a=1 b=5 100+50+3≠(1+5)³
a=2 b=3 200+30+3≠(2+3)³
Замечаем, что число слева оканчивается 3 Значит проверим кубы чисел и найдем то, которое дает 3 на конце.
Это 343=7³=(3+4)³ Проверим, может ли a=3, b=4 Получим слева 343 и справа 343 Вот и ответ. 34 34·10=340 340+3=343=(3+4)³
-36 2,088
160
-144
160
-160
ит.д