Пускай бассейн заполнялся Х часов, тогда опорожнялся он 8-Х часов. Причем скорость выливания была У кубов в час, а заполнения, соответственно, У-4. Имеем такие уравнения. Опорожнение бассейна: (8-Х)*У=30. Заполнение бассейна: Х*(У-4)=30. Решим их как систему, выразив из первого У и подставив во второе: У=30/(8-Х) По теореме Виета корни данного уравнения (-12; 5). Однако, отрицательный корень противоречит условию задачи. Следовательно, Х=5.
Проверка. У=30/(8-Х)=30/3=10. Насос выливает по 10 кубов в час, и освобождает бассейн от воды за 3 часа. Затем он начинает наполнять его со скоростью У-4=10-4=6 кубов в час, и чтобы заполнить все 30 кубов, тратит 30/6=5 часов. ответ верен.
х=1/10 (или, если изучали уже десятичные дроби, то 0,1)