К 1) номеру
чтобы выражение имело смысл,надо чтобы знаменатель не ровнялся нулю (потому,что по правилу на 0 делить вообще нельзя)
Значит:
√2х-5 "не равно" 0 ("не равно" это такой значок -- перечёркнутое равно)
В следующем действии убираем корень и решаем как обычное уравнение
(с иксом влево,без икса вправо)
√2х-5 "не равно" 0
2х-5 "не равно" 0
2х "не равно" 5
х "не равно" 5/2
х "не равно" 2,5
Получается,что уравнение имеет смысл,если х "не равно" 2,5)))
Ко 2) номеру
-3 ≤ 2+4х ≤ 8
-3-2≤ 4х≤ 8-2
-5/4≤х≤ 6/4
-1,25≤х≤ 1,5
Соответственно если нужны целые числа,то ответ будит такой: -1;1
6(x^2 + 1/x^2) + 5(x + 1/x) - 38 = 0
так как (x + 1/x)^2 = x^2 + 1/x^2, то после замены x + 1/x = t получаем квадратное уравнение:
6(t^2 - 2) + 5t - 38 = 0
6t^2 + 5t - 50 = 0
D = 25 + 4*6*50 = 1225 = 35^2
t = (-5 +- 35)/12
t1 = -10/3; t2 = 5/2
x + 1/x = -10/3
3x^2 + 10x + 3 = 0
D/4 = 25 - 9 = 16 = 4^2
x = (-5 +- 4)/3
x1 = -3; x2 = -1/3
x + 1/x = 5/2
2x^2 - 5x + 2 = 0
D = 25 - 16 = 9 = 3^2
x = (5 +- 3)/4
x3 = 2; x4 = 1/2
ответ. -3; -1/3; 2; 1/2