М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yuliaprok61yulia1206
yuliaprok61yulia1206
09.02.2022 15:47 •  Алгебра

Найдите три последовательных натуральных числа, если квадрат наименьшего числа из них на 20 меньше произведения двух других чисел.

👇
Ответ:
tjumentseva20031
tjumentseva20031
09.02.2022

пусть это будут х, х+1, х+2

(х+1)*(х+2)-х^2=20

х^2+2x+x+2-x^2=20

3x=18

x=6, х+1=6+1=7, х+2=6+2=8

4,7(26 оценок)
Ответ:
sonys8412
sonys8412
09.02.2022

Пустьмы имеем три последовательных натуральных числа это: x, (x+1), (x+2),

тогда по условию 


x^2+20=(x+1)(x+2)


x^2+20=x^2+2x+x+2

получаем 3х=18

ответ три числа: 6,7,8

4,8(58 оценок)
Открыть все ответы
Ответ:
Mished
Mished
09.02.2022
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел. 

Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1. 

Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел. 

Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью. 

Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
4,4(47 оценок)
Ответ:
romka199811p0bu18
romka199811p0bu18
09.02.2022

Обозначим cлагаемые за Х,У,Z

(X+Y+Z)/3>=1

Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :

ХУZ>=1

Вернемся к исходным обозначениям

8abc>=(a+b)(b+c)(a+c)

Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим

a+b>=2sqrt(ab)   b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)

поэтому можим заменить сомножители справа на произведение

2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc,   что и доказывает неравенство.

Равенство достигается только при а=с=b

4,6(88 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ