1) у = -4 + 3/(х - 2) Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞) Учитывая функцию -4 + 3/(х -2), множество значений будет (-∞; -4)∨(-4; +∞) 2) -1 ≤Sin x ≤ 1 |·(-3) 3 ≥ -3Sin x ≥ -3 или -3 ≤ -3Sin x ≤ 3 | +4 1 ≤ 4 - 3Sin x ≤ 7 3) y = | x - 2| -1 Если рассматривать функцию у = | x - 2|, то множество значений будет [0 ; + ∞) -1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)
Значение производной в точке касания равно угловому коэффициенту касательной, в данном случай двум. Значит абсцисса точки касания находится из уравнения:
Т.о. имеются две точки, в которых касательная к графику нашей функции имеет угловой коэффициент, равный 2. Вычислим значения функции в этих точках и проверим, удовлетворяют ли они уравнению касательной:
при х = -1 при
Проверим удовлетворяет ли уравнению касательной у=2х точка (-1;-2): -2 = 2*(-1) -2 = -2 ( ДА)
Проверим удовлетворяет ли уравнению касательной у=2х точка : (НЕТ)
Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞)
Учитывая функцию -4 + 3/(х -2),
множество значений будет (-∞; -4)∨(-4; +∞)
2) -1 ≤Sin x ≤ 1 |·(-3)
3 ≥ -3Sin x ≥ -3
или
-3 ≤ -3Sin x ≤ 3 | +4
1 ≤ 4 - 3Sin x ≤ 7
3) y = | x - 2| -1
Если рассматривать функцию у = | x - 2|,
то множество значений будет [0 ; + ∞)
-1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)