Окружность с центром в т. O и D = 68. Хорда AB.
Расстояние OM = 30 от т. O до прямой AB.
Найти:AB - ?
Решение:Заметим, что OM ⊥ AB (так как OM - это расстояние от т. О до прямой AB - длина перпендикуляра из точки О к прямой AB).
Пусть отрезок OM лежит на радиусе OC рассматриваемой окружности. Тогда OC, как радиус, перпендикулярный хорде, пересекает эту хорду ровно в ее середине: AM = BM.
Рассмотрим прямоугольные треугольники, равные по первому признаку (или же по двум катетам OM = OM и AM = BM): ΔAOM = ΔBOM.
OA = OB = D / 2 = 68 / 2 = 34, как радиусы.
OM = 30, по условию.
Применим теорему Пифагора, например, к ΔAOM:
AM² + OM² = AO²
AM² = AO² - OM²
AM² = 34² - 30²
AM² = 256
AM = 16
Значит:
AB = AM + BM = AM + AM = 16 + 16 = 32.
Задача решена!
ответ: 32.10sin^2x-17cosx-16=0
10(1-cos^2x)-17 cosx-16=0 (основное тригонометрическое тождество)
10-10cos^2x-17cosx-16=0
-10cos^2x-17cosx-6=0
10cos^2x+17cosx+6=0
Мы привели к простому квадратному уравнению.
Введём замену: cos x=t
10t^2+17t+6=0
10t^2+5t+12t+6=0
(5t+6)(2t+1)=0
t=-6/5
t=-1/2
Из этого получаем следующую совокупность:
cosx=-6/5 => нет решений, т.к. cos a ≥ -1
cosx=-1/2 => x=60°, или π/3 радиан.
ответ: π/3.
Если вам понравилось решение, ставьте большие пальцы вверх,жмите сердца, подписывайтесь на канал, сохраняйте видос и до скорых встреч в эфире deyvarFM.