М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Альбина2112
Альбина2112
23.04.2023 01:36 •  Алгебра

Определить четная или нечетная функция. 1) y = (x^4+4) / 2x^3 2) y = (x^4 - cos x) / 5x^3 - 3x

👇
Ответ:
ikilan201
ikilan201
23.04.2023
Чтобы функция была чётной, надо, чтобы выполнялось равенство: f(-x) = f(x)
Чтобы функция была  нечётной, надо, чтобы выполнялось равенство: 
f(-x) = - f(x)
То есть по сути дела: надо вместо х подставить -х, упростить( где можно) и сравнить с заданной функцией. ответы равные - функция чётная, ответы отличаются только знаком - нечётная; ни то, ни сё - функция ни чётная, ни нечётная.
а) f(x) = (x^4 + 4)/2x^3
    f(-x) = ( (-x)^4 +4)/2(-x)^3 = (x^4 +4)/-2x^3= -  (x^4 +4)/2x^3 = -f(x) ⇒ 
⇒f(x) - чётная
б) у = f(x) = (x^4 - Cos x)/(5x^3 - 3x)
          f(-x) = ((-x)^4 - Cos(-x)) / (5(-x)^3 -3(-x)) = (x^4 - Cosx)/(-5x^3 +3x) = 
= (x^4 - Cos x)/-(5x^3 - 3x)= - (x^4 - Cos x)/(5x^3 - 3x) = -f(x)⇒
⇒ f(x) - нечётная
4,5(82 оценок)
Открыть все ответы
Ответ:
Uchenik00ot00boga
Uchenik00ot00boga
23.04.2023

Объяснение:5)5-2ax=14+2x;                        6)3(8-3ах)=8-ах;            

-2ax-2x=14-5;                                                        24-9ах=8-ах;    

-2x(a+1)=9;                                                              -9ах+ах=8-24;      

x= - 9/2(a+1).                                                             8ах=16        

ур-ие имеет решение при ∀ а≠-1.                        ах=2 -

                                                                                  а≠0.

7)7х(а-8)=-5   -ур-ие имеет решение

при всех значениях а≠8.

8)3х(а+7)=7

ур-ие имеет решение при всех значениях а≠ -7.

 

4,4(23 оценок)
Ответ:

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

4,8(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ