S = Vt, где S — расстояние, V — скорость, а t — время.
Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль.
Разбираемся с легковой машиной. S = Vt —> t = , где t — время, S — путь, а V — скорость. Расстояние мы вычислили, а скорость легковой машины дана в условии. t = = 4 часа — время, потраченное легковой машиной на путь.
Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа.
Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
числитель
хх-8х+16+хх-16х+64-10=2хх-24х+70=2(хх-12х+35)=2(х-7)(х+5)
Знаменатель
хх+2х+1+хх-6х+9-80=2хх-4х-70=2(хх-2х+1-36)=2(х-7)(х+5)
Отношение равно 1.
ответ : 1
2) Числитель (аx)^2+(by)^2+(bx)^2+(ay)^2 = (aa+bb)*(xx+yy)
Знаменатель (сс+аа)(хх+уу)
Отношение : (a^2+b^2)/(c^2+a^2)
ответ: (a^2+b^2)/(c^2+a^2)