Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант: Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Разделите число желаемых событий на общее число возможных событий. Вы получите вероятность происшествия единичного события. В случае с выпадением числа три на игральной кости (на игральной кости только одна тройка), вероятность можно выразить как 1 ÷ 6, 1/6, .166, или 16.6%. Вот примеры вычисления вероятности для других примеров:Пример 1: Какова вероятность выбрать выходной день, случайно выбирая число?Так как в неделе два выходных, то число желаемых событий будет 2, а число возможных событий равно 7. Вероятность будет равна 2 ÷ 7 = 2/7, или .285, или 28.5%.Пример 2: В банке с мармеладом находится 4 синих, 5 красных и 11 белых шариков. Если предположить, что шарики перемешаны и вытаскиваются случайным образом, какова вероятность вытащить красный?Число желаемых событий равняется количеству красных шариков в банке – 5, общее число событий равняется 20. Вероятность 5 ÷ 20 = ¼, или 0.25, или 25%.
1/2 + (-1/2) = 0
4*( 2 sin 7π/6) = 2 * ( 2 * (-1/2) ) = -2
по формулам суммы
(2cos60/2*cos24/2) / cos12 =( 2cos30*cos12)/cos12 = 2cos30 = 2*√3/2=√3