0,5+m
Объяснение:
Для того, чтобы найти требуемое значение логарифма log49(28), которого обозначим через L, воспользуемся следующей формулой loga(b / с) = logab / logaс (где а > 0, a ≠ 1, b > 0, c > 0), которая называется формулой перехода к новому основанию.
В нашем примере новым основанием будет число 7, так как дано log7(2) = m. Итак, имеем L = log7(28) / log7(49). Поскольку 28 = 7 * 22 и 49 = 72, то используя следующие формулы, преобразуем полученное выражение: loga(b * с) = logab + logaс (где а > 0, a ≠ 1, b > 0, c > 0) и logabn = n * logab (где а > 0, a ≠ 1, b > 0, n – любое число). Получим: L = log7(7 * 22) / log7(72) = (log7(7) + log7(22)) / log7(72) = (log7(7) + 2 * log7(2)) / (2 * log7(7)).
Очевидно, что log7(7) = 1. Тогда, имеем: L = (1 + 2 * m) / (2 * 1) = 1 : 2 + 2 * m : 2 = 0,5 + m.
1. Упрощаем: 2x²-3х -22 - x² + 4=0
x² - 3х - 18=0 и x²-4 не равно 0
1.Д= 9²
х1= 6
х2= -3
2.х= 2 и х=-2
2. 4x²- 11х -3=0 и 3-х не равно 0
1.Д=13²
х1=-0.25
х2=3
2. х не равен 3
3. (х+1)(3х-9)+ (х-1)(х+6) - 3(х-1)(х+1) все это делить на (х-1)(х+1)
3x²-9х+3х-9+x²+6х-х-6-3x²+3 делить на (х-1)(х+1)
-12+x²-х делить на (х-1)(х+1)
-12+x²-х=0
Д=12 в квадрате
х1=-3
х2= 4
И х не равен 1 и -1
4. Упрощаем:
(5х-2)(х+3)=(3х+2)(2х+1)
(5х-2)(х+3)-(3х+2)(2х+1)=0
5x²+15х-2х-6-6x²-7х-2=0
-x²+6х-8=0
Д=4²
х1=2
х2=4
х не равен -1/2 и -3
Объяснение: