Заменим у числа 2014 последние две цифры нулями и получим сумму двух чисел с замененными цифрами, равную 2000. так как эти числа равны, то разделим 2000 на 2 получим 1000, значит искомые число 1014
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
Разложим трёхзначное число 4ab по разрядам, получим 400+10a+b Переставим в трёхзначном числе цифру 4 на место единиц и разложим получившееся число по разрядам, получим 100a+10b+4 Вычтем из числа 4ab число ab4, получим: (400+10a+b)-(100a+10b+4)=400+10a+b-100a-10b-4=396-90a-9b По условию, данная разность равна 279. Составим уравнение: 396-90a-9b=279 -90a-9b=-117 |:(-9) 10a+b=13 Заметим, что 10a+b - поразрядная запись числа 13, т.е. a=1 и b=3 Следовательно, 4ab - это число 413 ab4 - это число 134 Находим сумму полученных трёхзначных чисел: 413+134=547 ответ: А) 547