Справедлива теорема: Пусть функция y=f(x), непрерывная на интервале (a; b), имеет на этом интервале только одну точку экстремума – точку x1. Тогда если x1 - точка максимума, то f(x1)- наибольшее значение функции f(x) на интервале (a; b); если же x1 - точка минимума, то f(x1) - наименьшее значение функции f(x) на интервале (a; b).
- интервал (0; 3) принадлежит этому множеству, и функция там непрерывна. x=1 - единственная критическая точка на (0; 3). + - - о----------|-----------o------> 0 1 3 Поскольку в окрестности х=1 производная меняет знак с "+" на "-", сама функция изменяет поведение с возрастания на убывание, т.е. х=1 - точка максимума. Следовательно, в силу указанной выше теоремы функция принимает наибольшее значение на интервале (0; 3) именно при х=1. Это значение равно у(1)= ln 1 - 1 = 0 - 1 = - 1. ответ: 1.
Самое главное ты уже сделала - это выучила формулы Давай разберем куб суммы (a+b)³=a³+3a²b+3ab²+b³ Здесь везде плюсы, и запоминать знаки не надо (3+2)³=3³+3×3²×2+3×3×2²+2³ при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать итак мы получаем 27+3×(9×2)+3×(3×4)+8 27+54+46+8 135 самое главное запомнить 1. Сначала возводишь числа в степень 2. Потом производишь умножение 3. В конце складываешь или вычитаешь В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь) главное степени знать какие
Первую скобку можно переписать в виде
У этой скобки решений нет
Вторая скобка
Корни этой скобки