1) Найдем, при каких х нужно найти значение функции:
2) ОДЗ функции : Т.к. - парабола ветвями вверх, то неравенство выполняется для любых х.
3) Т.к. под корнем стоит квадратичная функция, определим как ведет себя парабола при указанных в п.1 значениях х: вершина параболы: При х∈(-4;1) - убывает При х∈(1;6) - возрастает
4) Значит минимальное значение функция принимает в вершине параболы х=1:
5) Максимальное значение функция f(x) примет либо в х=-4, либо в х=6:
ответ: f(x)∈(2/√29; 1) при x∈(-4;6)
P.S. В доказательство правильности решения прикрепляю график функции
По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
2) ОДЗ функции
Т.к.
3) Т.к. под корнем стоит квадратичная функция, определим как ведет себя парабола при указанных в п.1 значениях х:
вершина параболы:
При х∈(-4;1) - убывает
При х∈(1;6) - возрастает
4) Значит минимальное значение функция
5) Максимальное значение функция f(x) примет либо в х=-4, либо в х=6:
ответ: f(x)∈(2/√29; 1) при x∈(-4;6)
P.S. В доказательство правильности решения прикрепляю график функции