f(x)=−x
2
−4x+6
Так как старший коэффициент а=-1 , то ветви параболы направлены вниз . Вершина в точке (-2;10) . Проходит через точки (-1;9) , (-3;9) , (-4;6) .
ООФ: x\in (-\infty ;+\infty )x∈(−∞;+∞) .
Мн. значений функции : y\in (-\infty ;10\ ]y∈(−∞;10 ] .
Точка пересечения с осью ОУ: (0;6) .
Точки пересечения с осью ОХ:
-x^2-4x+6=0\ \ ,\ \ D/4=4+6=10\ \ ,\ \ x_{1,2}=-2\pm \sqrt{10}−x
2
−4x+6=0 , D/4=4+6=10 , x
1,2
=−2±
10
Интервалы знакопостоянства: y>0 при x\in (-2-\sqrt{10}\ ;\ -2+\sqrt{10}\, )x∈(−2−
10
; −2+
10
) ,
y<0 при x\in (-\infty ;-2-\sqrt{10}\ )\cup (-2+\sqrt{10}\ ;+\infty )x∈(−∞;−2−
10
)∪(−2+
10
;+∞) .
Функция возрастает при x\in (-\infty \ ;-2\ ]x∈(−∞ ;−2 ] и убывает при x\in [-2\, ;+\infty )x∈[−2;+∞) .
Точка максимума (-2 ;10 ) .
Ось симметрии - прямая х= -2 .
Наибольшее значение функции у=10 .
1
x^2+х-а=0 ; x^2+pх-q=0 ; p=1 ; q=a ; x1=4
теорема виета для приведенного квадратного уравнения
x1+x2 =-p = -1 ; 4+x2 = -1 ; x2 = -5
x1*x2 =q =a ; 4 *(-5) = -20
ОТВЕТ
x2 = -5
a= -20
2
x1=-5 ; x2 = 8
(x+5) (x-8) = x^2-8x+5x -40 = x^2-3x-40
5
то же самое ,что 2
3
а)
x^2/ (x+6) = 1/2 ;
ОДЗ x+6 = 0 ; x = -6 (- 6 исключаем из корней)
2x^2 = (x+6) ;
2x^2 - x- 6 =0;
D = (-1)^2 - 4*2(-6) =1+48=49 ; √D = √49 = -/+7
x1 = (1 -7 )/ (2*2)=-6/4 =-3/2 =- 1.5
x2 = (1 +7 )/ (2*2)=8/4 =2
ОТВЕТ -1.5 ; 2
б)
(x^2-x) / (x+3) = 12 / (x+3)
ОДЗ x+3 = 0 ; x = -3 (- 3 исключаем из корней)
(x^2-x) = 12
x^2-x - 12 =0
D = (-1)^2 - 4 *1*(-12)=49 ; √D = √49 = -/+7
x1 = (1-7) / 2 = -6/2 = -3 не входит в ОДЗ
x2 = (1+7) / 2 = 8/2 = 4
ОТВЕТ 4