Пусть — общее число человек на экзамене по математике. 15% не решили ни одной задачи, запишем это как , 144 человека решили с ошибками, а число верно решивших все задачи относится к числу не решивших вовсе, как 5:3. Как же это записать? Временно обозначим число верно решивших задания как . Итак, число верно решивших относится к числу не решивших вовсе, как 5:3. Получается: , отсюда . Итак, у нас есть три группы экзаменуемых: не решили , решили с ошибками 144, решили правильно . Вместе эти три группы есть общее число человек на экзамене, то есть . Получаем:
1. Пусть меньше трёх очков набрали n команд. Заметим, что в любом матче разыгрываются два очка, поэтому в (n + 2)(n + 3)/2 матчах среди n + 3 команд разыгрывается (n + 2)(n + 3) очков. С другой стороны, количество очков не больше, чем 7 + 5 + 3 + 2n = 2n + 15, откуда (n + 2)(n + 3) ≤ 2n + 15, n^2 + 3n - 9 ≤ 0, а значит, n = 1. Но среди четырёх команд разыгрываются только 4 * 3 = 12 очков, хотя по условию только призёры набрали 15. Противоречие. ответ: нет.
2. Всего есть 4 * 4 = 16 вариантов. Петя может задать вопросы вида "Ты живешь в одной из квартир:" - и перечислить половину квартир, в которых может жить Маша. Вне зависимости от того, как ответит Маша, количество вариантов после каждого вопроса уменьшится вдвое, значит, после четырёх вопросов количество квартир, в которых может жить Маша, уменьшится до одной: 16 -> 8 -> 4 -> 2 -> 1. ответ: да.