Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.
\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.
Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.
\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.
Объяснение:
удачи получить хорошую отметку
В решении.
Объяснение:
1. Дано приведённое квадратное уравнение x²+px+q=0.
Что в нём означает коэффициент q?
х₁⋅х₂;
2. Дано приведённое квадратное уравнение x²+px+q=0.
Что в нём означает коэффициент p?
-х₁-х₂ = -(х₁+х₂);
3. Дано квадратное уравнение x²+12x−3,9=0, укажи сумму и произведение корней.
x₁+x₂= -12;
x₁⋅x₂= -3,9;
4. Составь квадратное уравнение, если известно, что его корни равны −4 и 1.
1) Найти р:
х₁ + х₂ = -р;
-4 + 1 = -3; значит, р = 3;
2) Найти q:
х₁ * х₂ = q;
-4 * 1 = -4; q = -4;
Уравнение:
z² + 3z − 4 = 0
5. Составь квадратное уравнение, корнями которого являются числа x₁= −9; x₂= −18, при этом коэффициент a=1.
1) Найти р:
х₁ + х₂ = -р;
-9 + (-18) = -27; значит, р = 27;
2) Найти q:
х₁ * х₂ = q;
-9 * (-18) = 162; q = 162;
Уравнение:
x² + 27x + 162 = 0.
6. Не используя формулу корней, найди корни квадратного уравнения x²+22x+85=0
x₁= -5; x₂= -17.
7. Найди корни квадратного уравнения x²+4x+3=0
x₁= -1; x₂= -3.