1). Множество целых чисел состоит из натуральных чисел, целых отрицательных чисел и числа "ноль": -1,-2,-3,0,1,2,3,.. Число называют рациональным, если его можно представить в виде дроби p/q, где p - целое число, q - натуральное: 2/3, 5/13, 6/19... Действительное число - это число, которое можно записать в виде бесконечной десятичной дроби: 2,4; 2,(3); 0,(8)...
2). Со сравнениями нам все объясняли жутко сложно. В общем, нужно перевести периодическую десятичную дробь в обыкновенную по формуле суммы убывающей геометрической прогрессии или правилом: Для того, чтобы записать периодическую десятичную дробь в виде обыкновенной дроби, надо в числителе записать разность числа до второго периода и числа до первого периода, в знаменателе записать столько девяток, сколько цифр в периоде, и приписать к ним столько нулей, сколько цифр между запятой и первым периодом. ... и сравнить как обычные десятичные дроби.
3). Модуль числа a равен a, если a больше или равно 0 Модуль числа а равен -а, если а меньше нуля.
Для того, чтобы билет был интересным, нужно, чтобы в его номере присутствовали числа 05, 16, 27, 38, 49, 50, 61, 72, 83, 94 Всего 10 пар. Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так: ab** *ab* **ab где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов. Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук. Тогда вероятность вытянуть такой билет составит