Решение задачи может быть произведено несколькими Первый классический. Выделим полный квадрат в этом выражении и посмотрим, к чему дело придёт. Надеюсь, с техникой выделения полного квадрата все знакомы, поэтому не комментирую этот шаг. x^2 - 6x + 10 = (x^2 - 2 * 3x + 9) - 9 + 10 = (x-3)^2 + 1 - раскройте скобки, проверьте, что я ничего не изменил. В силу того, что (x-3)^2 >= 0, имеем, что (x-3)^2 + 1 >= 1, то есть все значения этого выражения не меньше 1. Откуда и следует доказываемое равенство.
Либо же можно было просто заметить, что дискриминант трёхчлена x^2 - 6x + 10 отрицательный. Геометрически это означает, что на координатной плоскости парабола эта лежит целиком над осью OX. В силу того, что и ветви этой параболы направлены вверх, видим, что все значения этой параболы будут положительными, что и требовалось доказать. Это второй решения.
2 бригада выполняет всю работу за x дней, по 1/x части в день. 1 бригада выполняет работу за (x-3) дней, по 1/(x-3) части в день. Сначала 1 бригада сделала за 1 день 1/(x-3) часть. Затем 1 и 2 бригада за 3 дня сделали вместе 3*(1/x + 1/(x-3)) часть. И вместе они за 3 дня сделали всю работу, то есть 1. 1/(x-3) + 3/x + 3/(x-3) = 1 3/x + 4/(x-3) = 1 3(x-3) + 4x = x(x-3) 3x - 9 + 4x = x^2 - 3x x^2 - 10x + 9 = 0 (x - 1)(x - 9) = 0 Очевидно, x не может быть равно 1. Значит, x = 9 дней нужно 2 бригаде, чтобы сделать всю работу. x - 3 = 6 дней нужно 1 бригаде, чтобы сделать всю работу.
61-30x+25x+30-6=0
85-5x=0
-5x=-85
X=17