Объяснение:
в первом можно извлечь кубический корень с двух частей уравнения и получить квадратное уравнение x^2=6x-5 где x=5 x=1 (с арифметикой могу наложать сори )
а во втором сначала в функцию p(a)посдставляем a выходит a(6-a)/a-3
потом вместо а подставляем 6-a выходит (a-6)(6-(6-a)/(6-a)-3
упрощаем второе выражение (a-6)(a)/3-a ->a^2-6a/3-a
а теперь делим первое на второе
a(6-a)/a-3:a^2-6a/3-a получается сверху a(6-a)*(a-3) а снизу
(a-3)a(a-6)
сокращаем получаем -1 так как поменяли местами a-6
Объяснение:
в первом можно извлечь кубический корень с двух частей уравнения и получить квадратное уравнение x^2=6x-5 где x=5 x=1 (с арифметикой могу наложать сори )
а во втором сначала в функцию p(a)посдставляем a выходит a(6-a)/a-3
потом вместо а подставляем 6-a выходит (a-6)(6-(6-a)/(6-a)-3
упрощаем второе выражение (a-6)(a)/3-a ->a^2-6a/3-a
а теперь делим первое на второе
a(6-a)/a-3:a^2-6a/3-a получается сверху a(6-a)*(a-3) а снизу
(a-3)a(a-6)
сокращаем получаем -1 так как поменяли местами a-6
Согласно условия задачи выражение: (1-с)>(3-5c) на 1, следовательно:
(1-с) - (3-5с)=1
1-с -3+5с=1
4с=1-1+3
4с=3
с=3 :4
с=3/4
ответ: При переменной (с) , равной с=3/4, выражение (3-5с)< (1-с) на 1