Приводим дроби к общему знаменателю 6. Первую дробь умножаем на 3 ( и числитель и знаменатель) Вторую дробь умножаем на 2 ( и числитель и знаменатель) Требуется, чтобы (3b+12)/6 > (10-4b)/6 Для выполнения которого нужно, чтобы 3b+12 было больше 10- 4b 3b+12 > 10 - 4b 3b +4b > 10 - 12 7b > -2 b > -2/7
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
7х-2у=0 запишем как уранение прямой с угловым коэффициентом k: y=3,5x Прямая проходит через точки (0;0) и (2;7)
3х+6у=24 запишем в виде уравнения в отрезках. Для этого делим каждое слагаемое на 24. (х/8)+(у/4)=1 Легко построить прямую. Она отсекает на осях координат отрезки: на оси ох длиной 8; на оси оу длиной 4. Прямая проходит через точки (8;0) и (0;4). См. графическое решение в приложении.
Решение сложения Умножаем первое уравнение на 3: 21х-6у=0 3х+6у=24 Складываем 24х=24 ⇒ х=1 у=3,5х=3,5·1=3,5
Первую дробь умножаем на 3 ( и числитель и знаменатель)
Вторую дробь умножаем на 2 ( и числитель и знаменатель)
Требуется, чтобы
(3b+12)/6 > (10-4b)/6
Для выполнения которого нужно, чтобы
3b+12 было больше 10- 4b
3b+12 > 10 - 4b
3b +4b > 10 - 12
7b > -2
b > -2/7