М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nikitka113532
Nikitka113532
20.09.2021 21:12 •  Алгебра

)вычислите площадь фигуры, ограниченной графиком функции y=8x-2x^2, касательной к этой параболе в ее вершине и прямой x=0

👇
Ответ:
kachakomba
kachakomba
20.09.2021
Площадь фигуры нужно находить через интеграл. Для начала найдем уравнение касательной к параболе:
1) Y=y(a)+y'(a)*(x-a)
из условия известно, что касательная проведена в вершине параболы, т.е. в точке (2; 8): x_{0}= \frac{-8}{-4}=2y_{0}=8*2-2*4=16-8=8
a=2
y(a)=y(2)=8
y'(a)=8-4a
y'(2)=8-4*2=0
Y=8+0*(x-2)=8 - уравнение касательной в вершине параболы.

2) Площадь фигуры, ограниченной:
параболой: y=8x-2x²,
прямой: х=0,
касательной к параболе: y=8,
равна:
S= \int\limits^2_0 {(8-8x+2x^{2})} \, dx=8x-4x^{2}+ \frac{2x^{3}}{3}|^{2}_{0}=16-4*4+\frac{2*8}{3}=16-16+\frac{16}{3}=\frac{16}{3}=5\frac{1}{3}

)вычислите площадь фигуры, ограниченной графиком функции y=8x-2x^2, касательной к этой параболе в ее
4,8(85 оценок)
Открыть все ответы
Ответ:
FJcjfjvj
FJcjfjvj
20.09.2021

1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.

2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1

3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x  = -3,5 (cos 2x - cos² x) - cos x  =  -3,5 (2cos²x - 1 - cos² x) - cos x  = -3,5 (cos²x - 1) - cos x  = 3,5 (1 - cos²x) - cos x  = 3,5 sin²x - cos x

4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5

5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.

11) найдите sin²a, если cos2a = 1/5

sin²a = (1 - cos2a)/2 =  (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.

12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1

4,6(89 оценок)
Ответ:
нет169
нет169
20.09.2021

1) 3/2cos2x + 1,5sin² x - 1 = 1,5cos2x + 1,5sin² x - 1 = 1,5(cos2x + sin² x) - 1 = 1,5(1 - 2sin²x + sin² x) - 1 = 1,5(1 - sin²x) - 1 = 1,5cos²x - 1.

2) 3sin²x + 1 - 3cos² x = 3sin²x - 3cos² x + 1 = -3(cos² x - sin²x) + 1 = -3cos2x+ 1

3) -7/2 cos 2x - cos x + 3,5cos² x = -3,5 cos 2x + 3,5cos² x - cos x  = -3,5 (cos 2x - cos² x) - cos x  =  -3,5 (2cos²x - 1 - cos² x) - cos x  = -3,5 (cos²x - 1) - cos x  = 3,5 (1 - cos²x) - cos x  = 3,5 sin²x - cos x

4) 5 - 20sin² a · cos²a ,если sin 2a=-1/5

5 - 20sin² a · cos²a = 5(1 - 4sin² a · cos²a) = 5(1 - sin2a) = 5(1 - (-1/5)) = 5 + 1 = 6.

11) найдите sin²a, если cos2a = 1/5

sin²a = (1 - cos2a)/2 =  (1 - 1/5)/2 = (1 - 0,2)/2 = 0,8 / 2 = 0,4.

12) sin2x · tgx - sin²x + 1 = 2sinx · cosx · (sinx/cosx) - sin²x + 1 = 2sinx · sinx - sin²x + 1 = 2sin²x - sin²x + 1 = sin²x + 1

4,5(77 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ