1.
216х² - 6у⁴ = 6 * (36х² - у⁴) = 6*(6х - у²)(6х + у²) (ответ Е),
2.
а)
S = 6а² = 6*(3х - 4)² = 6*(9х² - 24х + 16) = 54х² - 144х + 96,
б)
V = а³ = (3х - 4)³ = 27х³ - 108х² + 144х - 16,
3.
а)
4,3² - 2,58 + 0,3² = 4,3² - 2*4,3*0,3 + 0,3² = (4,3 - 0,3)² = 4² = 16,
б)
(44² - 12²) / (56² - 16²) = (44 - 12)(44 + 12) / (56 - 16)(56 + 16) =
= (32*56) / (40*72) = 28/45,
4.
1 число - х,
2 число - (х-52),
х² - (х-52)² = 208,
х² - х² + 104х - 2704 = 208,
104х = 208 + 2704,
104х = 2912,
х = 28 - 1 число,
х-52 = 28 - 52 = -24 - 2 число
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.