1. a) (y-6)²=y²-12y+36
b) (7x+2)²=49x²+28x+4
в) (4c-1)(4c+1)=16c²-1
г) (2a+3b)(2a-3b)=4a²-9b²
2. a) (x-3)(x-7)-2x(3x-5)=x²-7x-3x+21-6x²+10=-5x²-10x+31
б) 4a(a-5)-(a-4)²=4a²-20a-a²-8a+16=3a²-28a+16
в) 2(m+1)²-4m=2(m²+2m+1)-4m=2m²+4m+2-4m=2m²+2
г) (a-8)²-(64+2a)=a²-16a+64-64-2a=a2-18a
3. (2-x)²-x(x+1,5)=4
4-4x+x²-x²-1,5x=4
-5,5x=4-4
-5,5x=0
x=0/-5,5
x=0
4.
а) (y²– 2а) (2а + y²)=y⁴-4a²
б) (3х² + х)²=6x⁴+6x³+x²
в) (2 + m)² (2 – m)²=(4+4m+m²)(4-4m+m²)=16-8m²+m⁴
5. Упростите выражение
(у² – 2у)² – у²(у + 3)(у – 3) + 2у(2у² + 5)=y⁴-4y³+4y²-y²(y²-9)+4y³+10y=13y²+10y
ПРАВИЛЬНО 100%
Объяснение:1)У квадратного уравнения есть три коэффициента:
a = 1.
b = -37.
c = -27.
D = b^2 - 4ac = -37^2 - 4 * 1 * -27 = D > 0, значит у уравнения два вещественных корня (^(1/2) - это знак корня): x = (-b ± D^(1/2))/(2a).
D^(1/2) = 38,4318.
x1 = (37 + 38,4318) / (2 * 1) = 37,7159.
x2 = (37 - 38,4318 ) / (2 * 1) = -0,715879.
ответ: 37,7159, -0,715879.
2)У квадратного уравнения есть три коэффициента:
a = 1.
b = -2.
c = -9.
D = b^2 - 4ac = -2^2 - 4 * 1 * -9 = D > 0, значит у уравнения два вещественных корня (^(1/2) - это знак корня): x = (-b ± D^(1/2))/(2a).
D^(1/2) = 6,32456.
x1 = (2 + 6,32456) / (2 * 1) = 4,16228.
x2 = (2 - 6,32456 ) / (2 * 1) = -2,16228.
ответ: 4,16228, -2,16228.
3)У квадратного уравнения есть три коэффициента:
a = 2.
b = 7.
c = 6.
D = b^2 - 4ac = 7^2 - 4 * 2 * 6 = D > 0, значит у уравнения два вещественных корня (^(1/2) - это знак корня): x = (-b ± D^(1/2))/(2a).
D^(1/2) = 1.
x1 = (-7 + 1) / (2 * 2) = -1,5.
x2 = (-7 - 1 ) / (2 * 2) = -2.
ответ: -1,5, -2.
4)У квадратного уравнения есть три коэффициента:
a = 3.
b = -4.
c = -4.
D = b^2 - 4ac = -4^2 - 4 * 3 * -4 = D > 0, значит у уравнения два вещественных корня (^(1/2) - это знак корня): x = (-b ± D^(1/2))/(2a).
D^(1/2) = 8.
x1 = (4 + 8) / (2 * 3) = 2.
x2 = (4 - 8 ) / (2 * 3) = -0,666667.
ответ: 2, -0,666667.
решение на фото