Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Пусть х – знаменатель дроби, тогда х-3 – числитель этой дроби, дробь- (x-3)/x К числителю прибавили 3, а к знаменателю 2, получим дробь: (x-3+3)/(x+2)=x/(x+2)
Составим уравнение: х/(x+2)-(x-3)/x=7/40 (приведем к общему знаменателю х*(х+2)): х*x-(x-3)(x+2)=7/40 (x²-x²+3x-2x+6)/x(x-2)=7/40 (x+6)/(x²+2x)=7/40 40*(x+6)/(x²+2x)=7 40x+240=7(x²+2x) 40x+240=7x²-14x 40x+240-7x²-14x=0 26x-240-7x²=0 (умножим на -1) 7x² -26x-240=0 D=b²-4ac=(-26)²+4*7*(-240)=676+6720=7396 x1=-b+√D/2a=-(-26)+√7396/2*7=26+86/14=8 x2=-b-√D/2a=-(-26)-√7396/2*7=26-86/14=-60/14 - не подходит х – знаменатель дроби, х=8, тогда числитель х-3=8-4=5 дробь: 5/8 проверим: было 5/8, стало 8/10 8/10-5/8=(8*4-5*5)/40=7/40 ответ: 5/8
1,3х-1,2х=3,7-0,7
0,1х=3
х=30