1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое
{ x1 - 2x2 + 3x3 = 6
{ 2x1 + 3x2 - 4x3 = 20
{ 3x1 - 2x2 - 5x3 = 6
Умножим 1 ур. на -2 и сложим со 2 ур. Умножим 1 ур. на -3 и сложим с 3 ур.
{ x1 - 2x2 + 3x3 = 6
{ 0x1 + 7x2 - 10x3 = 8
{ 0x1 + 4x2 - 14x3 = -12
Разделим 3 ур на -2
{ 0x1 - 2x2 + 7x3 = 6
Умножаем 2 ур. на 2, а 3 ур. на 7 и складываем их друг с другом
{ x1 - 2x2 + 3x3 = 6
{ 0x1 + 7x2 - 10x3 = 8
{ 0x1 + 0x2 + 29x3 = 58
x3 = 58/29 = 2
7x2 - 10*2 = 8; x2 = 28/7 = 4
x1 - 2*4 + 3*2 = 6; x1 = 6 + 8 - 6 = 8
ответ: x1 = 8; x2 = 4; x3 = 2
Метод Крамера. Определитель Δ
|1 -2 3|
|2 3 -4| = 1*3(-5)+3*2(-2)+3(-2)(-4)-3*3*3-1(-2)(-4)-2(-2)(-5) =
|3 -2 -5|
= -15 - 12 + 24 - 27 - 8 - 20 = -58
Определитель Δx1 получаем, заменив столбец x1 на свободные
|6 -2 3|
|20 3 -4| = 6*3(-5)+20*3(-2)+6(-2)(-4)-6*3*3-20(-2)(-5)-6(-2)(-4) =
|6 -2 -5|
=-90 - 120 + 48 - 54 - 200 - 48 = -464
x1 = Δx1 / Δ = (-464) / (-58) = 8
Точно также подставляем столбец свободных членов вместо x2 и x3.
Получаем
Δx2 = -232; x2 = Δx2 / Δ = (-232) / (-58) = 4
Δx3 = -116; x3 = Δx3 / Δ = (-116) / (-58) = 2
Подробно распиши самостоятельно.