Мне надо при каком значении переменной: а) сумма выражений 2х+7 и -х+12 равна 14 б) разность выражений -5у+1 и 3у+2 равна -9 если можно подробное решение
A) после приведения подобных слагаемых получаем x+19=14, далее константу переносишь к константам т.е 14-ти с отрицательным знаком и выделяешь коофициент (разделив правую часть получил. зн. на левую). Второе уравнение решается аналогичным образом.
№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем: можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка: Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу: Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
а) рассмотрим прямоугольный треугольник с острыми углами 30 и 60 градусов. В таком треугольнике катет, противолежащий углу 30 градусов и прилежащий углу 60, равен половине гипотенузы, то есть cos60=1/2,т.к косинус- это отношение прилежащего катета к гипотенузе. Пусть этот катет равен х, тогда гипотенуза равна 2х. Катет, противолежащий углу 60 градусов, по теореме Пифагора равен , тогда sin60=√3x/2x=√3/2. b) Рассмотрим прямоугольный треугольник с острыми углами 45 градусов, это равнобедренный прямоугольный треугольник, его катеты равны, значит, можем найти гипотенузу по теореме Пифагора. Пусть катеты равны х, тогда гипотенуза равна . . d)sin30=cos60=1/2, cos30=sin60=√3/2
а) х=-5
б) у=1