М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vovaskorobogat
vovaskorobogat
27.12.2021 00:37 •  Алгебра

Число 162 есть членом прогрессии 2; 6; 18; .найдите номер этого числа.

👇
Ответ:
tvova258
tvova258
27.12.2021
A1=2  a2=6
q=a2/a1=6/2=3
an=a1*q^(n-1)
2*3^(n-1)=162
3^(n-1)=81
n-1=4
n=5
4,8(3 оценок)
Открыть все ответы
Ответ:
Жилая
Жилая
27.12.2021

1

Пример 1. 2sin(3x - p/4) -1 = 0.

Решение. Решим уравнение относительно sin(3x - p/4). 

sin(3x - p/4) = 1/2, отсюда по формуле решения уравнения sinx = а нахо­дим 

3х - p/4 = (-1)n arcsin 1/2 + np, nÎZ.

Зх - p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;

x = (-1)n p/18 + p/12 + np/3, nÎZ

Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.

Если k = 2n + 1 (нечетное число), то х = - p/18 + p/12 + ((2pn + 1)p)/3 = 

= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.

ответ: х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,

или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.

Пример 2. sinx + Öз cosx = 1.

Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение при­мет вид

sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;

sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x - p/6) = 1/2. 

По формуле для уравнения cosx = а находим

х - p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;

x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;

x2 = - p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ; 

ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

4,8(11 оценок)
Ответ:
Snomeli
Snomeli
27.12.2021

1

Пример 1. 2sin(3x - p/4) -1 = 0.

Решение. Решим уравнение относительно sin(3x - p/4). 

sin(3x - p/4) = 1/2, отсюда по формуле решения уравнения sinx = а нахо­дим 

3х - p/4 = (-1)n arcsin 1/2 + np, nÎZ.

Зх - p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;

x = (-1)n p/18 + p/12 + np/3, nÎZ

Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.

Если k = 2n + 1 (нечетное число), то х = - p/18 + p/12 + ((2pn + 1)p)/3 = 

= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.

ответ: х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,

или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.

Пример 2. sinx + Öз cosx = 1.

Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение при­мет вид

sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;

sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x - p/6) = 1/2. 

По формуле для уравнения cosx = а находим

х - p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;

x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;

x2 = - p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ; 

ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

4,5(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ