Объяснение:
Квадратное уравнение можно представить в виде:
a(x-x1)(x-x2)=0, где x1 и x2 - корни уравнения;
Раскроем скобки, тогда a*x^2-a*x(x1+x2)+a*x1*x2=0 (1)
у нас выражение x^2-x-p=0 (2)
Если сравнить 2 выражения.
Коэффициент в (2) перед x^2=1, отсюда следует, что в (1) a=1.
(1) принимает вид:
x^2-x*(x1+x2)+x1*x2=0
Сравниваем коэффициенты перед x, получаем
x1+x2=1 (3)
сравниваем свободные члены
-p=x1*x2 (4)
также по условию
x1^2+x2^2=25; (5)
тут 2 варианта, решить систему выше или можно предположить решение;
Предположим, что x1=-4, x2=5;
Тогда удовлетворяются все уравнения условия - (3), (5);
получаем, что p=-(-4)*(5)=20
В решении.
Объяснение:
График функции, заданной уравнением у=(a +1)x+a-1 пересекает ось абсцисс в точке с координатами (-5; 0).
а) Найдите значение а:
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6;
а = -6/4 (деление);
а = -1,5;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
в) Не выполняя построения графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.
7*(7-u)см.