Докажите что а) если a≤b и с - произвольное число то a+c≤b+c б) если а≤b и с - положительное число, то ас≤bс в) если а≤b и с - отрицательное чисто, то ас≥bc
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
а)Пусть а ≤ b. Это означает, что а — b ≤ 0. Поэтому (а + с) — (b + с) ≤ 0. А по определению это и означает, что а + с ≤ b + с.
б)Пусть а ≤ b.Произведение отрицательного чисел а — b и положительного с, очевидно, также отрицательно, т. е. (а — b) с ≤ 0, или
ас — bс ≤ 0. Поэтому ас ≤ bс.
в)Пусть а ≤ b. Произведение двух отрицательных чисел а — b и с, очевидно, положительно, т. е.
(а — b) с ≥ 0; поэтому ас — bс ≥ 0, откуда ас ≥ bс.