x = k/3; k € Z
Объяснение:
Область определения
cos(П/2 - 2Пх) ≠ 0
П/2 - 2Пх ≠ П/2 + Пm; m € Z
x ≠ - m/2; m € Z
Формулы приведения.
sin(П - 7Пх) = sin(7Пх)
sin(П/2 + 7Пх) = cos(7Пх)
sin(П - 2Пх) = sin(2Пх)
cos(П/2 - 2Пх) = sin(2Пх)
Подставляем.
sin^2(7Пх) + cos^2(7Пх) = sin(2Пх) / sin(2Пх) + sin(3Пx)*cos(Пх/2)
1 = 1 + sin(3Пх)*cos(Пх/2)
sin(3Пх)*cos(Пх/2) = 0
Если произведение равно 0, то один из множителей равен 0.
1) sin(3Пх) = 0
3Пх = П*k; k € Z
x1 = k/3; k € Z - это решение.
2) cos(Пх/2) = 0
Пх/2 = П/2 + П*n; n € Z
x2 = 1 + 2n; n € Z
x ≠ - m/2; m € Z
Но при любом n можно подобрать такое m, что будет
x2 = 1 + 2n = - m/2
Поэтому никакое х2 не подходит по области определения.
1.В геометрической прогрессии вычисли в6, если в1=-3,q=-1/3.
b6 = b1*q^5 = -3*(-1/3)^5 =1/81
2.Определи первый член и разности ариф.прогрессии, если а6=8, а8=16
разность d =(a8 - a6 ) / 2 =18-8 / 2 = 4
первый член a1 =a6 -5d= 8 - 5*4 = -12
3.Определи первый член и разность ариф.прогр.если а3=-11, а16=-56
разность d =(a16 - a3 ) / 13 = -56 - (-11) / 13 = - 45/13
первый член a1 =a3 -2d= -11 - 2* -45/13 = -53/13
4.Найти сумму одинадцати первых членов ариф..прогрессии если а1=-3 а2=8
разность d =(a2 - a1 ) =8 -(-3) =11
n=11
S(n) = 1/2 (2a1 +(n-1)d) *n=1/2 (2* -3 +(11-1)*11) *11 =572
5.Найти сумму шести первых первых членов геометрической прогрессии если в6=200, q=10
b1 =b6 / q^5 =200 / 10^5 =0.002 = 1/500
n=6
Sn =b1 (q^n -1) / (q-1) = 0.002 (10^6-1) / (10-1)=222.222
решение представлено на фото