Для нахождения max или min нужно воспользоваться производной
y= cos x
y`= - sin x
y`=0; -sin x=0; x=πn; n∈Z
точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)
определим знаки производной учитывая наш отрезок
0 (п/4) п(5п/3) 2п
y`<0 y`>0
функция убывает функция возрастает
Значит х=п, точка минимума функции
cos (п) = -1
Определим точки максимума на отрезке
т.к. максимумы функции бубт точки х=0 и х= 2п
то проверим значение функции вточках х=п/4 и х=5п/3 и сравним
cos (п/4)=√2/2; cos (5п/3)=1/2
Значит наименьшее значение функции в точке х=п и равно -1
наибольшее значение функции в точке х= п/4 и равно √2/2
Для нахождения max или min нужно воспользоваться производной
y= cos x
y`= - sin x
y`=0; -sin x=0; x=πn; n∈Z
точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)
определим знаки производной учитывая наш отрезок
0 (п/4) п(5п/3) 2п
y`<0 y`>0
функция убывает функция возрастает
Значит х=п, точка минимума функции
cos (п) = -1
Определим точки максимума на отрезке
т.к. максимумы функции бубт точки х=0 и х= 2п
то проверим значение функции вточках х=п/4 и х=5п/3 и сравним
cos (п/4)=√2/2; cos (5п/3)=1/2
Значит наименьшее значение функции в точке х=п и равно -1
наибольшее значение функции в точке х= п/4 и равно √2/2
Получим:
2x^3 + 2x^2 - 6x^2 + 5x - 6x - 15 = (2x^2 + 2x + 5)*(x - 3).
Таким образом, исходное уравнение примет вид:
(2x^2 + 2x + 5)*(x - 3) = 0.
Это уравнение имеет один действительный корень х - 3 = 0, х = 3.
И два комплексных корня: 2x^2 + 2x + 5 = 0, дискриминант равен - 36 = 36i^2
Корни х2 = -0,5 + 1,5i и x3 = -0,5 - 1,5i.
ответ: 3; - 0,5 + 1,5i; -0,5 - 1.5i