Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Решение. Обозначим буквой s площадь, которую скашивает один косец за день. Количество косцов артели обозначим буквой n. Тогда площадь первого луга равна
ns/2 + ns/4 = 3ns/4
(n косцов работали полдня, а потом n/2 косцов работали полдня, при этом весь луг был скошен). Площадь второго луга по условию вдвое меньше, значит, она равна 3ns/8, из которых ns/4 было скошено в первый день. Таким образом, один косец за день скосил
3ns/8 – ns/4 = ns/8.
Вспомнив определение величины s, получаем n = 8.