Пусть (10х + у) - неизвестное двузначное число, тогда ху - произведение цифр этого числа. Получаем первое уравнение системы уравнений: 10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений: 10х + у = 5(х + у)
Найдем значение х, если y = 5: 10х + 5 - 5х = 25 5х = 25 - 5 5х = 20 х = 20 : 5 х = 4 Получаем двузначное число: 10 * 4 + 5 = 45
Найдем значение у, если х = 5: 10 * 5 + у - 5у = 25 50 - 4у = 25 4у = 50 - 25 4у = 25 у = 25 : 4 у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0). ответ: 45.
Пусть (10х + у) - неизвестное двузначное число, тогда ху - произведение цифр этого числа. Получаем первое уравнение системы уравнений: 10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений: 10х + у = 5(х + у)
Найдем значение х, если y = 5: 10х + 5 - 5х = 25 5х = 25 - 5 5х = 20 х = 20 : 5 х = 4 Получаем двузначное число: 10 * 4 + 5 = 45
Найдем значение у, если х = 5: 10 * 5 + у - 5у = 25 50 - 4у = 25 4у = 50 - 25 4у = 25 у = 25 : 4 у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0). ответ: 45.
sinx=-√3/2
1)x=-π/3+2πn,n∈Z
0≤-π/3+2πn≤2π
0≤-1+6n≤6
1≤6n≤7
1/6≤n≤7/6
n=1⇒x=-π/3+2π=5π/3
2)x=4π/3+2πk,k∈Z
0≤4π/3+2πk≤2π
0≤4+6k≤6
-4≤6k≤2
-2/3≤k≤1/3
k=0⇒4π/3