М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alexalevdorovic
alexalevdorovic
20.04.2020 09:25 •  Алгебра

50х=-5 решите быстро и правильно все пункты

👇
Ответ:
scravtz
scravtz
20.04.2020
50х=-5
х=-5÷50
х=-0,1 
Отрицательное число делим на положительное, получается отрицательное 
4,5(11 оценок)
Открыть все ответы
Ответ:
mrmrheik
mrmrheik
20.04.2020
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
4,4(8 оценок)
Ответ:
Vampir181
Vampir181
20.04.2020
Исследовать функцию: f(x)= \frac{x^2+1}{2x}
    • Область определения функции:
               x\ne 0\\ D(f)=(-\infty;0)\cup(0;+\infty)
• Точки пересечения с осью Ох и Оу:
     Точки пересечения с осью Ох: нет.
     Точки пересечения с осью Оу: Нет.
• Периодичность функции.
     Функция  не периодическая.
• Критические точки, возрастание и убывание функции:
    1. Производная функции:
f'(x)= \frac{(x^2+1)'\cdot 2x-(x^2+1)\cdot(2x)'}{(2x)^2} = \frac{x^2-1}{x^2}
    2. Производная равна 0.
f'(x)=0;\,\,x^2-1=0;\,\,\,\,\Rightarrow\,\,\,\,x=\pm1

___-__(-1)____+__(0)____-___(1)___+___

х=-1 - точка минимума
х=1 - точка минимума

f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум

Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).

• Точка перегиба:
  f''(x)= \frac{(x^2-1)'2x^2-(x^2-1)\cdot(2x^2)'}{(2x^2)^2} = \frac{1}{x^3}
Очевидно что точки перегиба нет, т.к. f''(x)\ne 0

• Вертикальные асимптоты: x=0.

• Горизонтальные асимптоты: \lim_{x\to \pm \infty} f(x)=\pm \infty

• Наклонные асимптоты: \lim_{x \to \infty} ( \frac{1}{2x} +0.5x)=0.5x

График приложен
Исследовать функцию и составить график (x^2+1)/2x расписать!
4,5(75 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ