Рассмотрим числитель и разложим его на две скобки, так как тут можно применить формулу сокращенного умножения. Х²-3=(х-√3)(х+√3). Получится дробь (х-√3)(х+√3)\х+√3 Тогда сократится знаменатель х+√3 и скобка в числителе х+√3. ответ : х-√3
Смотри. Здесь использую формулы сокращённого умножения 1)5(a-b)²-(a+b)(b-a) =Смотри, 5+7 = 12, 7+5 = 12, значить когда ты имеешь право менять местачт числа при ДОДАВАНИИ.. значит: = 5(a-b)²-(b+a)(b-a) = теперь в конце есть формула a²-b² только в разложеном виде. собираем её = 5(a-b)²-a²+b²= далее раскладываем первую формулу (a-b)²= a²-2ab+b² = 5(a²-2ab+b²)-a²+b²= умножаю 5 на всё что есть в скобках = 5a²-10ab+5b²-a²+b² = 4a²-10ab+6b² 2)a(a-b)²-(b-a)³= раскрываю скобки по формулах = a(a²-2ab+b²)-(b³-3b²a+3ba²-a³) = умножаю первые скобки на а, а вторые раскрываю и меняю знак на противоположный a³-2a²b+b²a-b³+3b²a-3ba²+a³=2a³-5a²b+4b²a-b³
смотри 1. Берешь производную. получается y` = -2X - 6. 2. Находишь экстремум - т. е. точки, где прозводная равно 0. 0 = -2X - 6 X= - 3. Так как значение одно, значит экстремум один всего у функции. Это либо маскимум, либо минимум. 3. Производная в точке слева от экстремума, например, y`(-10) = 14 > 0 Производная справа, например в точке X=0 y`(0) = - 6 < 0. Т. е. производная меняет знак с плюса на минус. Значит X = -3 - это максимум. Либо зная, что экстремум один. Берешь любое другое значение для функции, например X=0. получаешь Y = -9. Значит экстремум больше этого значения. А так как он больше и он один, то полюбому это максимум при любых значениях X.