x|+9|+1|-5|>6 т.к. 6>0, то равносильно двум неравенствам: |||x|+9|+1|-5>6 и |||x|+9|+1|-5<-6 |||x|+9|+1|>11 и |||x|+9|+1|<-1 т.к. -1<0, а значение модуля не может быть отрицательным числом, то нер-во |||x|+9|+1|<-1 не имеет решения. продолжаем решать |||x|+9|+1|>11: т.к. 11>0, то равносильно двум неравенствам: ||x|+9|+1>11 и ||x|+9|+1<-11 ||x|+9|>10 и ||x|+9|<-12 т.к. -12<0, а значение модуля не может быть отрицательным числом, то нер-во ||x|+9|<-12 не имеет решения. ||x|+9|>10 т.к. 10>0, то равносильно двум неравенствам: |x|+9>10 и |x|+9<-10 |x|>1 и |x|<-19 (не имеет решения) |x|>1 равносильно двум неравентсвам: x>1 и x<-1 ответ x∈(-∞;-1)V(1;+∞)
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
т.к. 6>0, то равносильно двум неравенствам:
|||x|+9|+1|-5>6 и |||x|+9|+1|-5<-6
|||x|+9|+1|>11 и |||x|+9|+1|<-1
т.к. -1<0, а значение модуля не может быть отрицательным числом, то нер-во |||x|+9|+1|<-1 не имеет решения. продолжаем решать |||x|+9|+1|>11:
т.к. 11>0, то равносильно двум неравенствам:
||x|+9|+1>11 и ||x|+9|+1<-11
||x|+9|>10 и ||x|+9|<-12
т.к. -12<0, а значение модуля не может быть отрицательным числом, то нер-во
||x|+9|<-12 не имеет решения.
||x|+9|>10
т.к. 10>0, то равносильно двум неравенствам:
|x|+9>10 и |x|+9<-10
|x|>1 и |x|<-19 (не имеет решения)
|x|>1
равносильно двум неравентсвам:
x>1 и x<-1
ответ x∈(-∞;-1)V(1;+∞)