а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)
Пусть 1 кг арбуза стоит х грн, а 1 кг дыни у грн, тогда за 7 кг арбуза заплатили 7х грн, а за 3 кг дыни - 3у грн, а вместе 7х + 3у, что равно 5,90 грн. За 8 кг арбуза заплатили 8х грн, а за 6 кг дыни – 6у, по условию имеем 6у – 8х = 0,8.
Имеем систему уравнений
7х +3у = 5,9
6у – 8х =0,8
Умножим первое уравнение на 2: 14х + 6у = 11,8. Отнимем от первого уравнения второе: 14х + 6у - 6у +8х = 11,8 – 0,8; 22х = 11, х= 0,5; 7·0,5 + 3у =5,9; у = (5,9 – 3,5):3 =0,8
ответ: 1кг арбуза 0,5 грн = 50 коп.; 1 кг дыни 0,8 грн = 80 коп.
a^2+b (a в квадрате плюс b)
a^4+b
a^5+b
степенью многочлена называется наибольшая степень его переменных