М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лилиана4312
Лилиана4312
20.04.2022 06:55 •  Алгебра

Докажите что значение выражения 138^3-126^3 делится нацело на 8

👇
Ответ:
kir123kuz123
kir123kuz123
20.04.2022

138^3-126^3

Воспользуемся формулой: a^3-b^3=(a-b)(a^2+ab+b^2)

138^3-126^3=(138-126)(138^2+138\cdot126+126^2)=\\\\=12(138\cdot138+138\cdot126+126\cdot126)=\\\\=12(2\cdot69\cdot138+2\cdot69\cdot126+2\cdot63\cdot126)=\\\\=12\cdot2(69\cdot138+69\cdot126+63\cdot126)=\boxed{8}\cdot3(69\cdot138+69\cdot126+63\cdot126)

Один из множителей равен 8, значит, выражение делится нацело на 8.

4,5(49 оценок)
Открыть все ответы
Ответ:
Артем123100
Артем123100
20.04.2022

Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:

 

а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено

б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено

в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено

г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено

д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).

 

Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)

 

ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)

4,6(88 оценок)
Ответ:
maria2005dp
maria2005dp
20.04.2022

Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:

 

а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено

б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено

в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено

г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено

д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).

 

Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)

 

ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д

4,5(19 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ