2. Натуральным числом. Множество натуральных чисел алгебраически замкнуто относительно операции сложения.
3. В том случае, если уменьшаемое больше вычитаемого.
4. Произведение натуральных чисел — натуральное число. Множество натуральных чисел алгебраически замкнуто относительно операции умножения.
5. Нет, не всегда. Пример: 9 не делится нацело на 5. В таком случае можно разделить с остатком, где неполное частное и остаток будут натуральными числами.
6. На единицу (нейтральный элемент в аксиоматике умножения).
Объяснение:
Пусть имеется некоторый реальный эксперимент и пусть через {\displaystyle {A}}{A} обозначен наблюдаемый в рамках этого эксперимента результат. Пусть произведено {\displaystyle n}n экспериментов, в которых результат {\displaystyle {A}}{A} может реализоваться или нет. И пусть {\displaystyle k}k — это число реализаций наблюдаемого результата {\displaystyle {A}}{A} в {\displaystyle n}n произведённых испытаниях, считая что произведённые испытания являются независимыми.
Числовая функция: {\displaystyle \mathrm {N} _{n}(k)={\frac {k}{n}}\Leftrightarrow {\frac {k(A,n)}{n}}}\mathrm{N} _{n}(k)={\frac {k}{n}}\Leftrightarrow {\frac {k(A,n)}{n}} называется функцией относительной частоты реализаций наблюдаемого результата {\displaystyle {A}}{A} в {\displaystyle n}n независимых реальных экспериментах. Вероятность вычисляют до опыта, а относительную частоту - после опыта.
Если перед х² стоит знак (-), то у параболы ветви направлены вниз, и наибольшее значение функция примет в вершине параболы.