В решении.
Объяснение:
√52 - 10√27 - √52 - 10√27;
1) Нужно разложить первое подкоренное выражение на квадрат разности.
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 - 10√27 + 27 = √(5 - √27)² = |5 - √27| = √27 - 5.
Квадрат первого числа - удвоенное произведение первого числа на второе + квадрат второго числа.
Так как √27 больше 5, то |5 - √27| = -(5 - √27) = √27 - 5.
2) Разложить второе подкоренное выражение на квадрат суммы:
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 + 10√27 + 27 = √(5 + √27)² = |5 + √27| = 5 + √27.
Квадрат первого числа + удвоенное произведение первого числа на второе + квадрат второго числа.
Так как сумма в модуле положительная, то |5 + √27| = 5 + √27.
3) Вычитание:
√27 - 5 - (5 + √27) = √27 - 5 - 5 - √27 = -10. ответ примера.
Смотри задача нестандартная, поэтому все дело в понимании.
Пусть х чел ходит на шахматы, тогда 2х чел не ходит на шахматы, получаем
х+2х= от 20 до 30
С другой стороны,пусть у чел ходит на шашки, тогда 3у чел не ходит на шашки, получаем:
у+3у= от 20 до 30
Эти два уравнения должны выполнять одновременно, то есть мы должны найти только одно число от 20 до 30, при котором оба условия 3х=(20;30) и 4у=(20;30) выполняются одновременно. Такое число только одно - это 24.
Значит число учеников 24.