1) Если в какой-то части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки. Если стоит знак минус, при раскрытии скобок необходимо поменять все знаки в выражении, стоящем изначально в скобках, на противоположные. Например, -(2х-3)=-2х+3.
2) Перемножение двух скобок.
Если в уравнении присутствует произведение двух скобок, раскрытие скобок происходит по стандартному правилу. Каждый член первой скобки перемножается с каждым членом второй скобки. Полученные числа суммируются. При этом произведение двух "плюсов" или двух "минусов" дает слагаемому знак "плюс", а если множители имеют разные знаки, то слагаемое получает знак "минус".
Рассмотрим пример.
(5х+1)(3х-4)=5х*3х-5х*4+1*3х-1*4=15х^2-20х+3х-4=15х^2-17х-4. 3Раскрытием скобок иногда также называют возведение выражения в степень. Формулы возведения в квадрат и в куб надо знать наизусть и помнить.
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)^3=a^3+3a^2*b+3ab^2+b^3
(a-b)^3=a^3-3a^2*b+3ab^2-b^3
- x² + x - 1 = -x² + 2x - 3 или - x² + x - 1 = - ( - x² + 2x - 3)
- x² + x² + x - 2x = - 2 - x² + x - 1 = x² - 2x + 3
- x = - 2 - x² + x - 1 - x² + 2x - 3 = 0
x = 2 - 2x²+ 3x- 4 = 0
2x² - 3x + 4 = 0
D = b² - 4ac = 9 - 4×2×4 = 9 - 32 = - 23 - отри-
цательный,значит,корней нет