(x^2-x-a^2-a)(x^2-(a+2)x-2a^2+4a)=0 1)x^2-x-a^2-a=0 (x-a-1)(x+a)=0 x1=a+1; x2=-a 2)x^2-(a+2)x-2a^2+4a (x-2a)(x+a-2)=0 x3=2a;x4=2-a чтобы исходное уравнение имело три РАЗЛИЧНЫХ корня, нужно чтобы какие-то ДВА были одинаковыми, а другие два различными между собой и между теми двумя одинаковыми; ну то есть например находишь такое a, что x1=x2 и потом подставляешь его в x3 и x4 и смотришь, чтобы x3≠x4≠x1 у тебя будет как максимум =6 значений а, но поскольку x2≠x4 при любом a, то всего 5 значений параметра ( то, что ты записала как ответ, ты получишь, если сама дорешаешь)
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
1)x^2-x-a^2-a=0
(x-a-1)(x+a)=0
x1=a+1; x2=-a
2)x^2-(a+2)x-2a^2+4a
(x-2a)(x+a-2)=0
x3=2a;x4=2-a
чтобы исходное уравнение имело три РАЗЛИЧНЫХ корня, нужно чтобы какие-то ДВА были одинаковыми, а другие два различными между собой и между теми двумя одинаковыми; ну то есть например находишь такое a, что x1=x2 и потом подставляешь его в x3 и x4 и смотришь, чтобы x3≠x4≠x1
у тебя будет как максимум =6 значений а, но поскольку x2≠x4 при любом a, то всего 5 значений параметра ( то, что ты записала как ответ, ты получишь, если сама дорешаешь)