Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
cos²a=1:(1+tg²a)=1:(1+1/9)=1:10/9=9/10
cosa=3/√10
sina=√(1-cos²a)=√(1-9/10)=1/√10
sin2a=2sinacosa=2*1/√10*3/√10=3/5
cos2a=cos²a-sin²a=9/10-1/10=4/5
sin(2a-7π/4)=sin(2a+π/4)=sin2acosπ/4+cos2asinπ/4=3/5*√2/2+4/5*√2/2=
=√2/2(3/5+4/5)=√2/2*7/5=7√2/10
2)sin2a=2sinacosa=2*(-3/5)*(-√(1-9/25))=-6/5*(-4/5)=24/25
cos2b=2cos²b-1=2*225/289-1=(450-289)/289=161/289
sin(a+b)=sinacosb+cosasinb=-3/5*15/17+(-√(1-9/25))*(-√(1-225/289))=
=-45/85+(-4/5)*(-8/17)=-45/85+32/85=-13/85
cos(a-b)=cosacosb+sinasinb=-4/5*15/17+(-3/5)*(-8/17)=-60/85+24/85=-36/85