М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
little22elf
little22elf
19.06.2022 03:10 •  Алгебра

Найдите точку максимума функции у=(х-5)^2*e^x-7

👇
Ответ:
markinaalisa2003
markinaalisa2003
19.06.2022
(x-5)^2*e^x-7

Для нахождения локального максимума функции, найдём её стационарные точки, точки недифференцируемости и выясним поведение функции в некоторой окрестности данных точек.

Вычислим первую производную функции:
((x-5)^2*e^x-7)'=((x-5)^2*e^x+(-7))'
[применяем правило (u+v)'=u'+v']
((x-5)^2*e^x)'+(-7)'
[применяем правило (c)'=0, где c=const]
((x-5)^2*e^x)'
[применяем правило (uv)'=u'v+uv']
((x-5)^2)'*e^x+(x-5)^2*(e^x)'
[используем (e^x)^{(n)}=e^x, ∀n∈N_{0}]
((x-5)^2)'*e^x+(x-5)^2*e^x=e^x(((x-5)^2)'+(x-5)^2)
Найдём отдельно производную сложной функции (x-5)^2:
[по правилам (f(u(x)))'=f'(u(x))*u'(x) и (x^m)'=m*x^(m-1)]
2*(x-5)*1=2*(x-5)
Подставим найденное значение в e^x(((x-5)^2)'+(x-5)^2):
e^x(2*(x-5)+(x-5)^2)=e^x(x-5)(2+x-5)=e^x(x-5)(x-3)

Приравняем производную к нулю и найдём стационарные точки, точки недифференцируемости:
e^x(x-5)(x-3)=0
Отсюда x=5;3 - стационарные точки. Точек недифференцируемости нет.

Рассмотрим первую стационарную точку x=5. При x↑ производная меняет знак с "-" на "+" => x=5 - точка локального минимума функции.
Теперь рассмотрим стационарную точку x=3. При x↑ производная меняет знак с "+" на "-" => x=3 - точка локального максимума функции.

ответ: 3.
4,8(26 оценок)
Открыть все ответы
Ответ:
рксский
рксский
19.06.2022

Объяснение:

Решение квадратного неравенства

Неравенство вида

где x - переменная, a, b, c - числа, , называется квадратным.

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.

В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции

Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.

Такой метод решения квадратного неравенства называется графическим.

4,6(56 оценок)
Ответ:
Bong144
Bong144
19.06.2022

x3+x−2=0

x3+x−2=0Ищем первый корень через делители числа -2.

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.

x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.Следовательно, ответ: x=1

4,7(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ