М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Tim4ik2281
Tim4ik2281
18.05.2020 14:15 •  Алгебра

Вычислите площадь ромба,если его сторона равна 5 см,а сума диагоналей 14 см

👇
Ответ:
agentWINX
agentWINX
18.05.2020
Площадь ромб а равна полусумме диагоналей, значит 14/2=7
4,5(42 оценок)
Открыть все ответы
Ответ:
агент007200
агент007200
18.05.2020

\frac{27*a^3*b^2}{18*a*b^8}=1,5*a^2*\frac{1}{b^6}=\frac{3}{2}*a^2*\frac{1}{b^6}=\frac{3*a^2*1}{2*1*b^6}=\frac{3*a^2}{2*b^6}

Объяснение:

Степень числа, это произведение множителей, каждый из которых величиной  a, n раз подряд, где

a^n=a*a*a*a*a*...*a

Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого числа вычитают показатель степени делителя:

\frac{a^m}{a^n}=a^{m-n

Где m,n - любые натуральные числа, с условием, что mn.

Запишем наш пример:

\frac{27*a^3*b^2}{18*a*b^8}

Для наглядности решения данный пример можно разделить на три части, и согласно свойству частного степеней, которое я записал выше можно было проще решить данный пример.

Первой частью будут известные числа:

\frac{27}{18}=\frac{3^3}{3^2*2}=\frac{3^{3-2}}{2}=\frac{3^1}{2}=\frac{3}{2}=1,5\\27=3*3*3=3^3;\\18=3*3*2=3^2*2(1)

Теперь запишем отдельно деление переменной a:

\frac{a^3}{a^1}=a^{3-1}=a^2 (2)

Далее запишем переменную b:

\frac{b^2}{b^8}=b^{2-8}=b^{-6}=\frac{1}{b^6} (3)

Так как по определению отрицательной степени: b^{-n}=\frac{1}{b^n}

Теперь совместим (1), (2) и (3):

1,5*a^2*\frac{1}{b^6}=\frac{3}{2}*a^2*\frac{1}{b^6}=\frac{3*a^2*1}{2*1*b^6}=\frac{3*a^2}{2*b^6} - в дальнейшем данную дробь сократить невозможно, это и будет ответ.

4,4(65 оценок)
Ответ:
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C 
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1  -  верно

б) ∫[4x/√(x^2+4)]dx=    [ (x^2+4)=t     dt=2xdx ]   =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4)  -  верно

в) ∫-2xe^xdx  =-2 ∫xe^xdx= [ x=u         e^xdx=dv  ]
                                           [ dx=du       e^x=v      ]

-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
4,5(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ