М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asellial
asellial
07.12.2020 12:13 •  Алгебра

Разложите на множителиy^{2} -x^{2} +xy^{2} -x^{2} y^{2}

👇
Ответ:
Alex228345290
Alex228345290
07.12.2020

y²-x²+xy²-x²y² = y²(1+x-x²)-x²=(√(y²(1+x-x²)))-x)(√(y²(1+x-x²))+x). В принципе все, разложено на множители...

4,4(59 оценок)
Открыть все ответы
Ответ:
RMDEL
RMDEL
07.12.2020
Решение графический метод.

Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены каждого из уравнений в правую часть со сменой знака, а в левой части оставить переменную y.

\left \{ {{x-y=1} \atop {2x+y=-8}} \right. \Rightarrow \left \{ {{-y=1-x \: \: |\div(-1)\\} \atop {y=-8-2x}} \right. \Rightarrow \left \{ {{y=-1+x} \atop {y=-8-2x}} \right.

Теперь необходимо составить таблицу для переменных x и y, чтобы можно было подставлять значения выражений. После этого мы чертим координатную плоскость и находим точку пересечения прямых.

\: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2\\\\\left[\begin{array}{ccc}x&y\\2&1\\4&3\end{array}\right] \Rightarrow \left[\begin{array}{ccc}x&y\\-1&-6\\-2&-4\end{array}\right]\\\\1. \: \: \: y= -1+x=-1+2=-\Big(1-2\Big)=-\Big(-1\Big)=1\\1. \: \: \: y=-1+x=-1+4=-\Big(1-4\Big)=-\Big(-3\Big)=3\\2. \: \: \: y=-8-2x=-8-2\cdot\Big(-1\Big)=-\Big(8-2\Big)=-6\\2. \: \: \: y=-8-2x=-8-2\cdot\Big(-2\Big)=-\Big(8-4\Big)=-4

Затем можем приступать к координатной плоскости. По координатам в таблице чертим две прямые и рассматриваем точку, в которой они пересекаются. Остальное решение дано во вложении. Это приблизительная координата точки пересечения прямых.

метод подстановки.

Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены одного из уравнений в правую часть со сменой знака, а в левой части оставить переменную y.

\left \{ {{x-y=1} \atop {2x+y=-8}} \right. \Rightarrow \left \{ {{x-y=1} \atop {y=-8-2x}} \right.

Теперь подставляем во первом уравнении вместо y запись второго уравнения, а затем решим новое уравнение.

x-\Big(-8-2x\Big)=1 \Rightarrow x+8+2x=1 \Rightarrow 3x=-7 \Rightarrow x=-\cfrac{7}{3}=-2\cfrac{1}{3}

Это мы нашли значение переменной x и в тоже время координату оси абсцисс для точки пересечения прямых. Теперь найдём координату оси ординат.

y=-8-2\cdot\Big(-\cfrac{7}{3}\Big)=-8+\cfrac{14}{3}=-\Big(\cfrac{24-14}{3}\Big)=-\cfrac{10}{3}=-3\cfrac{1}{3}

Запишем в ответ точную координату точки пересечения данных прямых.

ответ:  \boxed{\bf \Big(x; \: \: y\Big)=\Big(-2\cfrac{1}{3}; -3\cfrac{1}{3}\Big)}
Найдите точки пересечения прямых: x-y=1 и с объяснением!!
4,6(53 оценок)
Ответ:
zoltomon
zoltomon
07.12.2020

sin^2t+cos^2t=1\\cos^2t=1-sin^2t\\cost=\pm\sqrt{1-sin^2t}

Т.к. t∈(π/2;π) - 2 четверть, в ней косинус отрицательный. значит перед корнем будет минус.

cost=-\sqrt{1-(\frac{5}{13})^2}=-\sqrt{\frac{169}{169}-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}

sin2t=2sint*cost=2*\frac{5}{13}*(-\frac{12}{13})=-\frac{120}{169}cos2t=cos^2t-sin^2t=(-\frac{12}{13})^2-(\frac{5}{13})^2=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}tg2t=\frac{sin2t}{cos2t}=\frac{-\frac{120}{169}}{\frac{119}{169}}=-\frac{120}{169}*\frac{169}{119}=-\frac{120}{119}ctg2t=\frac{1}{tg2t}=\frac{1}{-\frac{120}{119}}=-\frac{119}{120}

4,8(23 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ