Пусть х - это количество пятирублевых монет. Тогда у - количество рублевых монет. У нас две неизвестные, значит, нам нужно составить систему из двух уравнений, которые отражают условие нашей задачи: х+y=200; 5x+y=800; Я люблю решать методом алгебраического сложения (Х складываем с Х, У складываем с У, числа - с числами). Для этого нам нужно "убрать" одну переменную (т. е., когда мы сложим их, у нас получится ноль. Например: 2у-2у=0). Для этого часто нужно домножить одно, или оба уравнения на какое-либо число. Так и делаем: х+у=200 | * -1. Получается система: -х-у=-200; 5х+у=800. Складываем уравнения: 5х-х+у-у=800-200; 4х=600 Находим Х: х=600/4=150 Теперь одна переменная нам известна. Подставляем в любое из уравнений и находим вторую: 150+у=200; у=200-150=50
Тут нужно решать интервальным методом, показать здесь я это не могу. Но для начала нужно найти нули функции(значения х, при котором функция была бы равна нулю). Здесь нули ф.: 4;-3,5. Затем чертим ось ох, обозначаем эти точки и участки, где функция положительна или отрицательна. В итоге получаем, что функция <0 при х принадлежащем отрезку (-3,5;4) 2 решается точно так же, но тут для удобства нужно в 1 скобуе поменять местами числа, затем вынести за скобки -1 и умножить обе части неравенства на -1(при этом знак> меняется на знак <). Вот что получается (х-2)(х+1)<0. Нули функции: 2;-1. Дальше как я уже объяснял выше. ответ: при х принадлежащем отрезку (-1;2)