скорость моторной лодки от пристани до острова равна 50 км/ч.
1. x км/ч – скорость, с которой моторная лодка плыла от пристани до острова.
2. Составляем уравнение.
150 / x = 150 / (x + 10) + 0,5;
150 / x – 150 / (x + 10) = 0,5;
(150 * (x + 10) – 150x) / (x^2 + 10x) = 0,5;
(150x + 1500 – 150x) / (x^2 + 10x) = 0,5;
1500 = 0,5 * (x^2 + 10x);
0,5x^2 + 5x – 1500 = 0;
x^2 + 10x – 3000 = 0;
Дискриминант = 10 * 10 + 4 * 1 * 3000 = 12100 (корень из 12100 равен 110)
x = (-10 + 110) / 2 или x = (-10 - 110) / 2;
x ¹ = 50 или x = -60;
²
Так как скорость не может быть отрицательной, то она равна 50 км/ч.
а)2sin²x-3sinx-2=0
Замена sinx=t
2t²-3t-2=0
D=3²+4×2×2=25
t₁= 3+√D÷4=3+5÷ 4=8÷4=2
t₂=3-√D÷4=3-5÷4=-2÷4=-0,5
Возвращаемся к замене
sinx=2 sinx=-0,5
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
4cos²x+4sinx-1=0
cos²x=1-sin²x
4( 1-sin²x)+4sinx-1=0
4-4sin²x+4sinx-1=0
-4sin²x+4sinx-1+4=0
-4 sin²x+4sinx+3=0 ÷(-1)
4sin²x-4sinx-3=0
Замена sinx=t
4t²-4t-3=0
D=4²+4×4×3=16+48=64
t₁=4+√D÷8= 4+8÷8=12÷8=1,5
t₂=4-√D÷8=4-8÷8= -4÷8=-0,5
Возвращаемся к замене
sinx=1,5 sinx=-1\2
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
Катер из А в В проплыл 20 км по течению за t1=20/(12+v) часов.
Обратно он проплыл против течения за t2=20/(12-v) часов.
И ещё в пункте В он простоял 15 мин = 0,25 часа.
И получилось, что на всю дорогу он затратил ровно 4 часа.
20/(12+v) + 20/(12-v) + 0,25 = 4
Умножим всё на 4(12+v)(12-v)
80(12-v) + 80(12+v) = 15(12+v)(12-v)
960-80v+960+80v = 15(144-v^2)
2*15*64 = 15(144 - v^2)
128 = 144 - v^2
v^2 = 144 - 128 = 16
v = √16 = 4 км/ч скорость течения.