Куб со стороной 1 м разрезали на кубики со стороной 10 см и сложили из них башенку с основанием в 1 кубик. чему равна площадь поверхности получившейся башенки?
У куба со стороной 1м объем 1м3. Кубиков по 1000см3 (со стороной 10 см) там поместится 1000 штук. Соответственно, высота башенки будет 10*1000=10 000 см, ширина с каждой стороны - по 10 см. Плюс сверху и снизу добавляется по 100см2 площади. Стороны башенки 4. 10 000*10*4+100+100=400200см2 ответ: площадь башенки - 400200см2 или 40,02 м2
Если меньшая сторона прямоугольника - х см, то из условия большая сторона на 4 см больше, то есть (х+4), а диагональ - на 8 см больше, то есть (х+8). Составляем уравнение исходя из теоремы Пифагора для прям. тр-ка, в котором гипотенуза - диагональ пр-ка, а катеты - его стороны: (х+8)²= х² + (х+4)² х² + 16х + 64 = х² + х² + 8х + 16 х² - 8х - 48 = 0 По теореме Виета корни: х₁ = -4 х₂ = 12 Первый корень не подходит по смыслу. Значит меньшая сторона пр-ка равна 12. Большая тогда равна 12+4 = 16 см. ответ: 12см; 16 см.
Алгебраа. решите уравнение ..x^3-3x^2-x+3=0 Преобразуем выражение x³-3x²-x+3=0 х²(х-3)-1*(х-3)=0 Вынесем общий множитель х-3, получим (х-3)(х²-1)=0 т. к. а²-в²=(а-в) (а+в) , получим (х-3)(х-1)(х+1)=0 Произведение равно нулю, если один из множителей равен нулю, т. е. х-3=0 или х-1=0 или х+1=0, отсюда х=3 или х=1 или х=-1 ответ уравнение имеет три корня 3; 1; -1 решите неравенство -2x²-5x больше либо равно -3 -2x²-5x ≥-3 или -2x²-5x +3≥0 Решим уравнение -2x²-5x +3=0 Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49 Корни квадратного уравнения определим по формуле х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3 х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½ т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3) Отметим на числовой оси все корни уравнения и определим знак каждого промежутка
Кубиков по 1000см3 (со стороной 10 см) там поместится 1000 штук.
Соответственно, высота башенки будет 10*1000=10 000 см, ширина с каждой стороны - по 10 см. Плюс сверху и снизу добавляется по 100см2 площади.
Стороны башенки 4.
10 000*10*4+100+100=400200см2
ответ: площадь башенки - 400200см2 или 40,02 м2