М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Darkness171
Darkness171
07.01.2022 07:54 •  Алгебра

Выражение √x^2+9-6x и найти его значение при x =2,6

👇
Ответ:
bobbobbobgy1
bobbobbobgy1
07.01.2022
\sqrt{x^2+9-6x}= \sqrt{(x-3)^2}=|x-3|\\\\x=2,6\\\\|x-3|=|2,6-3|=|-0,4|=0,4
4,6(40 оценок)
Открыть все ответы
Ответ:
KarinaNedilko0564
KarinaNedilko0564
07.01.2022
Требуется получить трехзначное число, записанное тремя одинаковыми цифрами,  обозначим цифру, которая повторяется -  k,  т.о.  число будет записываться так kkk  Разложив это число на разрядные слагаемые получим сумму: 
     100 k  + 10k + k =  111*k,  где      k = 1, 2,,9

Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1  и разностью  d = 1 .
А найденная сумма 111*k  есть Sn   -  сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии
     Sn = ( 2а1 + (n-1)*d  / 2 ) * n  

Подставим сюда  числовые значения Sn, а1  и d    и  найдем n :    
  
     111*k  = ( 2*1 + (n-1)*1  / 2 ) * n
     111*k  = ( 2 +n-1  / 2 ) * n
     111*k  = ( 1 +n / 2 ) * n
     111*k  =   n + n^2 / 2
     222*k  =   n + n^2
     n^2  +   n  -  222*k  = 0
         D = 1  +  4*222*k  = 1  +  888*k 
     Т.к.  n  -  натуральное число,  то  SQRT( D )  должно быть целым,  значит
число  1  +  888*k  должно быть полным  квадратом,  т.е  заканчиваться цифрой  1, 4, 5, 6  или  9.  Соответственно 888*k  может заканчиваться на  0, 3, 4, 5, 8.

На 3  или 5  888*k  не может заканчиваться.
Если 888*k  заканчивается  на  0,  то  k=5
Если 888*k  заканчивается  на  4,  то  k=3  или k=8.
Если 888*k  заканчивается  на  8,  то  k=1  или k=6.

Т.о. k  может быть 1, 3, 5, 6, 8.

Проверим при каком из этих значений 1  +  888*k  является  квадратом:
при  k=1    1  +  888*1 = 889    (нет)
при  k=3    1  +  888*3 = 2665  (нет)
при  k=5    1  +  888*5 = 4441  (нет)
при  k=8    1  +  888*8 = 7105  (нет)
при  k=6    1  +  888*6 = 5329  (да,   тогда SQRT( D ) = SQRT( 5329 )  = 73  )
  
n =( -1 + 73)/2  = 72/2  = 36

ОТВЕТ:  нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.
4,4(77 оценок)
Ответ:
BelkaDengiStol
BelkaDengiStol
07.01.2022

а) { y=x^2, x-y=-6;

из второго уравнения видно, что х=у-6

подставляем вместо "х" "у-6" в первое уравнение.

получаем квадратное уравнение с у-ом, решаем его, получаем корни: у=9;4, тогда

х=3;-2 (нашли из подстановки "у" в х=у-6)

 

 б) { x+y=8, xy=12;


из первого уравнения видно, что х=8-у; подставим этот х во 2-ое уравнение, получим квадратное уравнение с "у". Решим его и получим, что корни у=6;2

найдем х, х=2;6


в) {x^2-Y^2=24, 2y-x=-7;


из 2-ого уравнения видно, что х=7+2у

подставим это во второе уравнение и получим квадратное уравнение с у, решив его, получим корни у=-1;-8(1/3).

найдем х, х=5;-9(2/3)


г)  {x^2+y^2+3xy=-1, x+2y=0


из второго уравнения видно, что х=-2у, подстави это в 1-ое урав. и получим, что у^2=1; у=+-1.

тогда х=-2;2

4,7(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ